畜牧兽医学报 ›› 2013, Vol. 44 ›› Issue (8): 1323-1329.doi: 10.11843/j.issn.0366-6964.2013.08.022
付常振1,昝林森1,2*,王虹1,姜碧杰1,成功1,2,王洪宝1,2,朱光星1,李耀坤1,王洪程1
收稿日期:
2013-01-22
出版日期:
2013-08-23
发布日期:
2013-08-23
通讯作者:
昝林森(1963-),男,陕西扶风人,教授,博士生导师,主要从事肉牛、奶牛遗传改良与种质创新等方面的研究,E-mail: zanlinsen@163.com
作者简介:
付常振(1986-),男,黑龙江克山县人,博士生,主要从事动物生理调控方面的研究,E-mail:fcz200801@yahoo.com.cn,Tel:029-87040326
基金资助:
国家转基因生物新品种培育重大专项(2011ZX08007-002);国家肉牛牦牛产业技术体系(CARS-38);国家自然科学基金(31272411);“十二五”国家863计划(2011AA100307-02);教育部“长江学者和创新团队发展计划”(IRT0940);“十二五”国家科技支撑计划(2011BAD28B04-03)
FU Chang-zhen1, ZAN Lin-sen1,2*, WANG Hong1, JIANG Bi-jie1, CHENG Gong1,2,WANG Hong-bao1,2, ZHU Guang-xing1, LI Yao-kun1, WANG Hong-cheng1
Received:
2013-01-22
Online:
2013-08-23
Published:
2013-08-23
摘要:
克隆秦川牛的SREBP1基因并构建重组腺病毒表达载体,包装扩繁获得高滴度病毒,拟为在细胞水平上开展基因功能的研究奠定基础。本试验以秦川牛脂肪组织为试验材料,提取总RNA并反转得到cDNA,以GenBank收录的牛的SREBP1基因mRNA序列设计引物,PCR扩增SREBP1基因与克隆载体pMD19-T Simple连接并测序鉴定。挑选测序正确的SREBP1基因酶切后连接到腺病毒穿梭载体上构建pAdTrack-CMV-SREBP1表达载体,用PmeⅠ限制酶酶切线性化,然后转染到含有骨架载体pAdEasy-1的E. coli BJ5183感受态进行同源重组,得到腺病毒重组载体pAd-SREBP1。用PacⅠ限制酶酶切线性化pAd-SREBP1载体并回收质粒大片段,转染293A细胞包装病毒并扩繁提高病毒滴度,绿色荧光蛋白(GFP)标记法测定腺病毒的滴度。本试验成功克隆了秦川牛的SREBP1基因,测序结果与GenBank收录的牛的基因序列比较有2处位点突变,均已排除扩增酶的保真性不高等外界因素造成的。将SREBP1基因与穿梭载体连接构建了pAdTrack-CMV-SREBP1表达载体,并与骨架载体重组得到重组腺病毒载体pAd-SREBP1,用PacⅠ酶切线性化包装病毒,扩繁得到病毒滴度为1.5×109 GFU·mL-1高滴度病毒。本研究成功克隆秦川牛SREBP1基因并重组成病毒重组子,包装扩繁得到高滴度腺病毒。
中图分类号:
付常振,昝林森,王虹,姜碧杰,成功,王洪宝,朱光星,李耀坤,王洪程. 秦川牛SREBP1基因重组腺病毒载体的构建与病毒包装[J]. 畜牧兽医学报, 2013, 44(8): 1323-1329.
FU Chang-zhen, ZAN Lin-sen, WANG Hong, JIANG Bi-jie, CHENG Gong,WANG Hong-bao, ZHU Guang-xing, LI Yao-kun, WANG Hong-cheng. Construction of Recombinant Adenovirus Vector Specific to SREBP1 Gene of Qinchuan Cattle and the Packaging and Amplifying of the Corresponding Adenovirus[J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(8): 1323-1329.
[1]刘丽,周光宏. 我国优质牛肉生产概况[J]. 黄牛杂志, 1998(4): 34-36. [2]KAZALA E C, LOZEMAN F J, MIR P S, et al. Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle[J]. J Anim Sci, 1999, 77(7): 1717-1725. [3]SHIMANO H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes[J]. Prog Lipid Res, 2001, 40(6): 439-452. [4]MA L, CORL B A. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1[J]. J Dairy Sci, 2012, 95(7): 3743-3755. [5]SUZUKI M, DOI T, LEE S J, et al. Effect of meal timing after resistance exercise on hindlimb muscle mass and fat accumulation in trained rats[J]. J Nutr Sci Vitaminol (Tokyo), 1999, 45(4): 401-409. [6]SHIMANO H, YAHAGI N, AMEMIYA-KUDO M, et al. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes[J]. J Biol Chem, 1999, 274(50): 35832-35839. [7]LIANG G, YANG J, HORTON J D, et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c[J]. J Biol Chem, 2002, 277(11): 9520-9528. [8]AMEMIYA-KUDO M, SHIMANO H, HASTY A H, et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes[J]. J Lipid Res, 2002, 43(8): 1220-1235. [9]RANGWALA S M, LAZAR M A. Transcriptional control of adipogenesis[J]. Annu Rev Nutr, 2000, 20: 535-559. [10]KIM G H, LEE K J, OH G S, et al. Regulation of hepatic insulin sensitivity by activating signal cointegrator-2[J]. Biochem J, 2012,447(3):437-447. [11]CHU X, LIU L, NA L, et al. Sterol regulatory element-binding protein-1c mediates increase of postprandial stearic acid, potential target for improving insulin resistance, in Hyperlipidemia[J]. Diabetes, 2013,62(2): 561-571. [12]MULLER-WIELAND D, KNEBEL B, HAAS J, et al. SREBP-1 and fatty liver. Clinical relevance for diabetes, obesity, dyslipidemia and atherosclerosis[J]. Herz, 2012, 37(3): 273-278. [13]VITTO M F, LUZ G, LUCIANO T F, et al. Reversion of Steatosis by SREBP-1c Antisense Oligonucleotide did not Improve Hepatic Insulin Action in Diet-induced Obesity Mice[J]. Horm Metab Res, 2012. [14]ZHANG C, CHEN X, ZHU R M, et al. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice[J]. Toxicol Lett, 2012, 212(3): 229-240. [15]SOUFI M, RUPPERT V, KURT B, et al. The impact of severe LDL receptor mutations on SREBP-pathway regulation in homozygous familial hypercholesterolemia (FH)[J]. Gene, 2012, 499(1): 218-222. [16]TAGHIBIGLOU C, LU J, MACKENZIE I R, et al. Sterol regulatory element binding protein-1 (SREBP1) activation in motor neurons in excitotoxicity and amyotrophic lateral sclerosis (ALS): Indip, a potential therapeutic peptide[J]. Biochem Biophys Res Commun, 2011, 413(2): 159-163. [17]江萃英,曾维琼,陈压西,等. 乙型肝炎病毒对脂肪变患者肝细胞固醇调节元件结合蛋白表达的影响[J]. 中华肝脏病杂志, 2011, 19(8): 608-613. [18]SHIMANO H, HORTON J D, HAMMER R E, et al. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a[J]. J Clin Invest, 1996, 98(7): 1575-1584. [19]HORTON J D, SHIMOMURA I, BROWN M S, et al. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2[J]. J Clin Invest, 1998, 101(11): 2331-2339. [20]HORTON J D, GOLDSTEIN J L, BROWN M S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Invest, 2002, 109(9): 1125-1131. [21]SHIMANO H, HORTON J D, SHIMOMURA I, et al. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells[J]. J Clin Invest, 1997, 99(5): 846-854. [22]EBERLE D, HEGARTY B, BOSSARD P, et al. SREBP transcription factors: master regulators of lipid homeostasis[J]. Biochimie, 2004, 86(11): 839-848. [23]HOASHI S, ASHIDA N, OHSAKI H, et al. Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle[J]. Mamm Genome, 2007, 18(12): 880-886. [24]KIM J B, WRIGHT H M, WRIGHT M, et al. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand[J]. Proc Natl Acad Sci U S A, 1998, 95(8): 4333-4337. [25]KIM J B, SPIEGELMAN B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism[J]. Genes Dev, 1996, 10(9): 1096-1107. [26]LIANG G, YANG J, HORTON J D, et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c[J]. J Biol Chem, 2002, 277(11): 9520-9528. [27]CINTRA D E, ROPELLE E R, VITTO M F, et al. Reversion of hepatic steatosis by exercise training in obese mice: The role of sterol regulatory element-binding protein-1c[J]. Life Sci, 2012, 91(11-12):395-401. [28]LYBARGER L, DEMPSEY D, FRANEK K J, et al. Rapid generation and flow cytometric analysis of stable GFP-expressing cells[J]. Cytometry, 1996, 25(3): 211-220. [29]HITT D C, BOOTH J L, DANDAPANI V, et al. A flow cytometric protocol for titering recombinant adenoviral vectors containing the green fluorescent protein[J]. Mol Biotechnol, 2000, 14(3): 197-203. [30]HUANG Y Z, HE H, SUN J J, et al. Haplotype combination of SREBP-1c gene sequence variants is associated with growth traits in cattle[J]. Genome, 2011, 54(6): 507-516. [31]VORBURGER S A, HUNT K K. Adenoviral gene therapy[J]. Oncologist, 2002, 7(1): 46-59. [32]LEE J, LAKS H, DRINKWATER D C, et al. Cardiac gene transfer by intracoronary infusion of adenovirus vector-mediated reporter gene in the transplanted mouse heart[J]. J Thorac Cardiovasc Surg, 1996, 111(1): 246-252. [33]HE T C, ZHOU S, DA C L, et al. A simplified system for generating recombinant adenoviruses[J]. Proc Natl Acad Sci U S A, 1998, 95(5): 2509-2514. [34]LUO J, DENG Z L, LUO X, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system[J]. Nat Protoc, 2007, 2(5): 1236-1247. |
[1] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[2] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[3] | 刘益丽, 唐娇, 闵奇, 杨露, 王泽宁, 胡莲, 赵迪, 江明锋. 基于转录组数据挖掘牦牛皱胃发育代谢的关键候选基因[J]. 畜牧兽医学报, 2024, 55(1): 153-168. |
[4] | 姚颖, 周应聪, 杜培岩, 李一娟, 钱文洁, 李柳杨, 余志鹏, 崔燕, 余四九, 樊江峰. 基于TMT技术的牦牛妊娠期血清蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(1): 192-206. |
[5] | 张颖, 袁莉刚, 陈国娟, 张芳, 杨大鹏. ET-1/eNOS表达差异在牦牛隐睾发生中的作用分析[J]. 畜牧兽医学报, 2024, 55(1): 207-217. |
[6] | 张文涛, 刘晨阳, 朱炳霖, 柳丽, 田媛, 姚宇航, 成功. Snail1对牛脂肪细胞增殖分化影响及作用机制的研究[J]. 畜牧兽医学报, 2023, 54(12): 5008-5019. |
[7] | 牛一凡, 杨柏高, 张培培, 张航, 冯肖艺, 曹建华, 余洲, 郝海生, 杜卫华, 邹惠影, 朱化彬, 马友记, 赵学明. 牛胚胎基因组选择研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4449-4457. |
[8] | 王文翔, 杜丽丽, 胡俊伟, 张琰翔, 马铭昊, 段蕊, 钱聪, 王欣玥, 李三禄, 张长庆, 张路培, 高雪, 徐凌洋, 李俊雅, 高会江. 基于转录组分析挖掘平凉红牛背最长肌肉质性状候选基因[J]. 畜牧兽医学报, 2023, 54(11): 4589-4604. |
[9] | 张倩, 崔燕, 余四九, 何俊峰, 潘阳阳, 王萌. 初生及成年牦牛大脑皮质的转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4605-4614. |
[10] | 董智豪, 时玉新, 郭冠华, 原开敏, 修豪宇, 汪超, 白俊艳, 王栋. 母牛不同发情阶段唾液化合物的比较分析[J]. 畜牧兽医学报, 2023, 54(11): 4636-4652. |
[11] | 孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039. |
[12] | 冯肖艺, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 能量负平衡导致奶牛繁殖力下降的机制进展[J]. 畜牧兽医学报, 2023, 54(10): 4050-4060. |
[13] | 马浩然, 张路培, 金生云, 宝金山, 李红艳, 高会江, 徐凌洋, 王泽昭, 李俊雅. 利用高密度SNP芯片评估中国地方肉牛品种基因组亲缘关系[J]. 畜牧兽医学报, 2023, 54(10): 4174-4185. |
[14] | 郭逸芯, 王之盛, 胡瑞, 王俊梅, 王森, 施丽媛, 张晓红, 邹华围, 左家学, 彭全辉, 薛白, 王立志. 亮氨酸对黄牛皮下脂肪细胞棕色化的影响[J]. 畜牧兽医学报, 2023, 54(8): 3286-3298. |
[15] | 褚楚, 张静静, 丁磊, 樊懿楷, 包向男, 向世馨, 刘锐, 罗雪路, 任小丽, 李春芳, 刘文举, 王亮, 刘莉, 李永青, 江汉, 李委奇, 孙伟, 李喜和, 温万, 周佳敏, 张淑君. 基于中红外光谱的牛奶中三种氨基酸含量预测模型的建立及应用[J]. 畜牧兽医学报, 2023, 54(8): 3299-3312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||